Understanding Machine Learning
From Theory to Algorithms
- Format: Innbundet
- Antall sider: 410
- Språk: Engelsk
- Forlag/Utgiver: SD Books
- EAN: 9781107057135
- Utgivelsesår: 2014
- Bidragsyter: Shalev-Shwartz, Shai (Hebrew University of Jerusalem); Ben-David, Shai (University of Waterloo, Ontario)
719,-
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible t